RAD-A144 232 RS THE SYSTEM DE

LANGUAGE (U> RRMY COMMUNICATIONS RESEARCH AND

BEVELOPHENT COMMAND FORT MONROUTH NJ T J WHEELER 1984
FrG 9,2

UNCLASSIFIED

"

a WY LR DI AP W i s A I S P A et g :
b e R R N T Y DTSN,

e . EERE SN s

C o

MR LI
v teT W s

i
-

)

,t .
K p2s W25 '
10 Bk 12
. — ﬁ K g2
' w L2
: K ,
: mll uw 2 I2.0
L
- . E 11"y
. =—— I 1.8
MICROCOPY RESOLUTION TEST CHART
_- NATIONAL BUREAU OF STANDARDS-1963-A
——"‘

Bl
Lt
e ~ e - -
- - ... - - - ~ . . o - . - .
. s i ‘ - - - ~ -
B - .
e et . R

............

...................

AD-A144 232

EMBEDDED SYSTEM
DESIGN WITH ADA
AS THE SYSTEM
DESIGN LANGUAGE

THOMAS J. WHEELER
SOFTWARE TECHNOLOGY DIVISION

R § fwl Wy,

-~ . - -

“; AUG 1 019845
. A

This document has been upproved
for public release and sale; its
distribution is unlimited.

84 08 09 098

[ORADOM

.....

ek b

ABSTRACT

\,
j‘necent research in the software engineering field nas produced a
nurber of tecnniques or rationals for structuring the understanding of
systeas, Many of these techniques are applicable to tne design of
embedded computer systems and produce designs whose structures are
easily expressible in the Adas language, The Ada language has a structure
wvhich allows the design of systems to be expressed independentiy of its
implementation and thus can be a good system design language for use
with these technigues,

This vaper describes the softwvare desiqgn problem in the development
of empedded computer systems and shows how the Ada language can be used
as a systenrm design language as well as a system implementation lanquage
to alleviate these problems, The essential point of this paper (s that
using Ada as a system design language encourages the designers to use
the recently developed techniques and theory to develop better structures
for thelir systems and then implement the systems in the same language
thus preserving that structyre in the product.

I.
11,
111,
1v,
A\

VI,

II.

Cyv

CONTENTS

Introdyction,
nodularization..

The Ada Langquage,

System Architecture Design.
System Component Design,
Conclusions.

APPENDICES,

System design example,
Syster Design Language syntax

summary,

- ———
‘

—

-f‘.-,-..—[: - ..
S A " PO

——

,‘-‘,_

+ et g e, .T.‘_....u
. Ao

- ——

—-——

E ! . & Introduction.) f;i

{ In response to tne explosive growth in the cost of development
! - and maintenance of software systems, there have dbeen & large number v
”h) of theories and technigues developed in the area of software design

and development. Some Of these are structured programaing, top=down 3
_ design and implementation, structured anslysis and design(21),
i - stepwise refinenent(23), information hiding(18) and programming teams

and walkthroughs(24)., The central aim of all of these is to provide
intellectual control of & design by 4 systematic decomposition. and
abstraction of the problea into component modules and composition
0f these modules into the systenm, L
#hile most of these techniques have produced impressive results, .
‘with measured gains of 4-6 times increase in productivity(2) not peing '
uncormon, the vrse of these techniques in the embedded systems ares hes
been linited, The reasons for this are varied. Some are technical sueh
88 lack of a suitadble high level language and the techniques and
conmpilers to go with them, However, other reasons are psychological
as £or instance, that the time to investigate desian techniques and
to learn to use & nev language is viewed as not affordable during
these norsally time constrained developments,
The technical barriers to the use of modern software engineering
theories and techniques are being overcome with the introduction of
a languaae and techniques specifically designed for embedded computer
applicatione. This paper addresses the effects of the Departrment of
Defense’s Ada language(i) on the design process for embedded systems,
One of the reasons that the Ada language is s0 important to the design
process is that the Ada language 13 structured to allow it to be used
as a systen desiqn language as well as a programming language, A systen
design language (SDL) (s a formal means of documenting the sgtructure of
the design of a system without the necessity of droviding or refering to
an implermentation ot the system, Ada provides this means by separating
the specifications of the components from their implementations and by
alloving interconnection of components only by those aeans documented
in the specitications of the coaponents,
One of the main themes of this caper is that the constraints on
the system structure imposed by the use of the Ada language as the
neans for documenting the systen’s design not only cause the system’s
desigon and implementation to be easier but also cause the resulting
system to be more maintaipabdble, Additionally, the use of Ada as both
the desion and implenentation language causes the documentation of the
systea to be aore controladle since the major part of the documentation,
even at the design level, is the system (ie, the program) itsels, c
One of the main criteria used ({n the design of tne Ada languaae -
vas that the language should aid in the design of reliable systems(5,22),
This criteria led to the incorporation of modularization by packaging
of nemed entities as the main basis(20) for structuring of software
systems. In addition Ada provides s distinct separation of the "
specitication of the visibple named entities of the module from the L
implementation of the module, This allows the structure, or the e
erchitecture, of the syster to be documented as the interconnection
of the interfaces of the modules without reference to the implemen=
tations O0f the modules, The use of Adas as a system design language
is a result of tnhis ebility to document the structure of & system
usina only the specifications of packages and their interconnection.,

Y

POWOTY

11, Modularization.,

The worlds of mechanical design and electronic system design have
long used the concept of modularization and have well developed methods
of documenting designs in terms of their component modules, ie, blueprints
and schematic drawings resvectively, Ada provides a means of docurenting
software designs ana communicating those design to others which, when
supplemented #ith its equivalent graphic drawing, is the equal of the more
mature documentation methods mentioned above, It is the egqual because the
basis is the same, The basis is that a design is represented as an
interconnection of the intertace characteristicts of components. This
interconnection i{s a model of a well structured understanding of the
system(21), It is the interface characteristics wnich actually define
the components which are used in the design because the interface
characteristics are all that the user of the component needs to use the
corponent and all that the designer of the component needs to build the
component(18),

The view of modularization embodied {n Ada has evolved slowly over
the past decade, The main reason for this slowness 1s that of the two
means of modularization, decomposition and abstraction, decomposition
was viewed as the method of modularization while abstraction was viewed
85 a mental tool rather tnan as a language supportaple mechanisa, In view
of the way a programming language influences the way that oeople think
apout systems and vice versa, tihls was both the result and the cause of
the structure of earlier high order languages such as Fortran, Cobol and
Alcol, In systems built in these languages, the interconnection of the
major suyb=tasks of the system was viewed as the responsibility of the
operating system functions such as linkage editing and the system
generation process, The interconnection of the gsmaller parts of the
systems built in these lanquages was through the use of global or common
data accessed by the subprograms from which the systems were constructed,

Modularization by abstraction had its roots in tne virtual machine
concept(6) and has been influenced by most of the major advances made
by software endgineering research, eg. the data typinao mechanism ot
Pascal(14), information hiding(198,19), abstract data types(?,8) and
module interconnection lanquages(4). The consensus aeveloped in the
research results is that a software system can and should be designed
and constructed as an interconnected network of software objects of
apstract data tyoes, Abstract data types are constructed out of a set
of values, which may be & complex composite of simpler values, and a
set 0f opberations which is applicable to the values, with no otner
operstions allowed, Each of tne objects of these types is to represent
(encapsulate)a particuvlar logical entity such as a design decision(18)
or a related set of properties of a logical item(?).

A grachical representation of a system modularized i{n this way is
shown In FIG 1a,., This system prints reports from local files or, if the
report is not available in the local files, the report mansger .requests
it frorm remote filesgs and prints {t when it has been copied to the local
flles., The explanation of this diaqramming method is in FIG 1b which is re
a diasgram of a single generic module where the abstract type or object \

is indicated by tnhe named box and the resources, ea, types, functions L
etc,, which are provided by the module and those which are required oy

the module are indiceted by the outgoing arrow aend tne {ncomming f 1
arrov respectively, .

{interpret
|

init,display,qetch
| exeC |(woevcncacsnccasassacan| ternin.1.|
.-.--.-'

{ getrept
i
|ecosvsssa|
| report |
| mansger |
| ncoovsvwen)
- "~
/ \
/q9ettile \gogQetgile
/ \ .
|cecsccana| |=vocoesvanns|
| local | | tile | |s=eseae |
i tille | | request | . | data | ~ * provided
| access | | handler | | comm | .} resources
joecscsnan| {evannensvaves | |evcanes| }
a a - a |
\ / \ '-w, |eoncacanse |
\ / \ /7 . { module |
\readt /writeg endgueue,dequeue | name |
\ / \N/ |sevconsanss |
(eecovecccanss | |mevencaacs] a
| file {0 | i message | | required
|escavecnanne| I queye { | resources
L4 '.--..-.--.l]
| read,write
| reserve,
i release
'
.-.....-...
I files |
'.----.---' .
FI16 1a F1G 1b

The Ada lanquage encourages this style of design by having vackaging
of Gata and procedures as its large scale structuring mechanism, In the
system diaarammed in FIG 1a, each of the modules becomes a package in Ada,
For example, the f£iles module in FIG 1a which provides access to the local .
tile system {8 specified in Ada as:

package FILES {s

type FILE
type LINE
procedure
procedure
procedure
procedure
end FILES)

Since 8 programming languace
systems, the use of Ada over

18 STRING(32)}

18 STRING(80)?

READ(F:in FILEjLsout LINE)}
WRITE(F:in FILEsL:in LINE)}
RESERVE(F:tin FILE);
RELEASE(Fstin FILE)?S

influences the way that peodle think about
a period of time leads tne designers to the

use of abstract dats types as & natural way to visualize system designs,

ettty et Sttt

B San Sman ven st S an ™

11X, The Ada Labquaqe.

o The Ada lanauage(1) was designed with three svecific goals:

o j.relisnility and maintainability, 2.recognition of programming as

- a8 human activity and j.efficiency. The girst two of these criteria

ll drove the structure of the lanquage and its intended use while the
last filtered the possible i{nefficient gstructures from the language,
The following 1s a brief overview of the important features of the
Ada language, The Ada language reference nanual(i) should be consulted
for a more thorough understanding ot the language,

] Program units.

Ada is designed to encourage modularization and the accompanying

: apility to tactor and compose & system from separately built parts, In

b Ada, a program i{s composed from program units, which are subdprogranms,

y packages (which define collections of entities,ie, named ftems), or tasks
. (which define concurrent or parallel computations), Each of these progranm
i units is made up of two parts: a specification, which contains those

: entities that are visible to other program units thus defining the external
1 characteristics of the unit, and a body, which contains the implementation
. of these entities and iz not visibple to .other units. Units and their parts
- are separately compilable,
L This separation of the specification and the implementation parts

of modules along with the ability to separate compile these parts allows

and encourages voth. tne construction of systems from sepsrately built
parts and the construction and uyse of libraries ot qenerally usable
component modules,

Program unit specifications.

The program units from which Adea drograms are consrtucted ares
subproorams, packages and tasks, Program unit speciticstions are named
declarations «hicn provide the types, objects and operations which can
be used by other program uynits,

Subprograms are the basic unit for expressing algorithms and provide
the means for naming definable actions, The two kinds of subprograms -are
procedures and functions, A procedure provides the series of actions,
defined in its body, whenever it is invoked, It may have parameters to
pass information into itself or back to its invoker, A function is a
named activity, or operation, which computes a value, It is similar to
8 procedure but returns & value asg the result of its peing invoked in
an expression,

Packaces are the units for encapsulating collections of logically
related data, Packages define sets of related types, data, operations
or subbproqgrams., Only those entities which are defined in the visible or
specification part of the vackage are allowed to be used by other units,
The implementation of the visible entities is hidden in the body of the
package,

Tasks are the program units for defining operations or procedures
which execute in parallel with other tasks, Tasks define entries which
are the synchronized operations provided for use by other tasks. Multiple
instances of tasks or dynamic tasks can be declared as objects of tasx
types,.The languace ajllows tasks to be implemented on multiorocessors,
multicomputers or to be interleaved on a single processor.,

Proqram unit bodies.

Program unit bodies consist of a declaritive part, which declares
. the entities which can be used {n the unit, and a seauence of statements,
- which defines the {mplementation of that program unit’s actions. These
I~ named entities which can pe used by the seguence of statements include
types, objects, exceptions and other nested program units,
-, The sequence of statements describes the unit’s actions. The
| statements can include assignment of values to variables, procedure callils
and structuring constructs, The structuring constructs include "{£" and
: "case" gtatements for selection, "while" and "tor" loops for iteration
l o and blocks for temporary declarations and actions,
Tagsks are constructed with the statements described above supole-
mented with real time and syncronization statements, These include the
“"delay" statement, the "entry® declaration for providing services to
| other tasks, and the "select"™ and "accept" statements for controling
- the rendezvous which syncronize tasks, In a rendezvous, either the
l requester or the provider of an action arrives at the rendezvous point
before the other. The one wnhich arrives f£irst waits for the other, wWhen
the other arives, the rendezvous takes place, the action is performed
and they both proceed with their next statements,

Exceptional conditions, which make it impossible to continue with
the normal execution of the program, are handled by &8 sequence of
statements enclosed in an exceotion handler placed at the end of the
proaram unit, When an exception handler is invoked, it replaces the
remainder of the unit wnere the exception occurred, Exceptions can be
raised explicitly in the progranm,

Types

Every object and value in the program has a type, A type consists
of a set of values and a set of operations applicable to the values,

Types are divided into four classes: scalar, composite, access and
private tyves,

Scalar types are both the numeric types(integer, fixed point and

' floating point) and enumeration types which allow programmers to define
ordered sets of distinct enumeration literals to be used as values in the
prograrm, Comoosite types provide the means of defining structured objects

, formed from related compohents, Two kinds of composite types are arrays,

: which have indexed components of the same type, and records, which have
named components of possibly different types,

Access types are used to construct dynamic data structures by
defining a mechanism for accessing unnamed odjects «hich are created
by allocators, 8oth the contents of the objects and the access values
to the objects may be changed dy the program,

Private types are defined Iin pacxages and only their names are made
visible in the specification part of the package, All operations on values
ot private tyve variables are defined in the package and bdoth the structure
of the dats used to define the type and the algoritnmg which imolement the
operations are hidden in the body of the package,

Other features

Ada provides a number of other facilities to provide the program
desianer with complete control of the computer when necessary., These
include representation of entities, control of interrupts and machine
code insertion. Inputeoutput i{s provided as a library feature rather than
beino ktuilt into the language. The lanquage provides for generic program
units to encapsulete sets of algoritnms appliceble to various tyves,

el ependh

1v. System Architecture Desion,

The quality of & system {8 highly dependent on the language in which
the systea is desianed and the lanquage in whiech the system is puilt, The
criteria in both cases is sirilar, the ease with which the requirements
or problem structure can be modeled in the design, in the first case and
the ease with which the design can be modeled tin the implementation , in
the second case, An {deal language would asllow doth the desiagn and the
implementation to nave a structure whieh is an accurate recording of the
solution to tne proolenm,

Almost all of the current high level languages discourage this sort
of mapping of solution into implementation, These languages sole concern
is in the expression of data and algorithms for a single process. This 1is
fine for small proarams but inadequate for large systems, These languages
have been refered to as languages for programming in the small(4), A
system design language SDL provides the means for describing the intere
connection information which (s the essence of system structuring and is
analogously refered to as 8 language for programming in the large(d4). Ada
is the integration of a language tor programming in the small with a
language for programming in the large, As such it fosters a transparent
mapping of both the requirements solution into the design and ot that
design into the implementation..

Recent research in the goftware engineering field has produced a
number of techniques or rationals for structuring the understanding of
systems, The Ada language was designed to facilitate the representing
of designs produced using these techniques, Thus Ada as a system design
languace (SDL) fosters the use of these techniques,

‘ The rest of this chapter will present three methods of structuring
systems and snow how Ada documents the resulting designs, The three
methods are functional decomposition(3d), intormation niding(i18) and
abstract data types(7). These technigues are not used {n exclusion of one
another but ratner are complementary of each other, They are normally
used in conjunction with one another for the complementary tasks of
refining and enhancing the desiqgn during the system’s development process.

1. Functional decomposition,

The functional decomposition or data transformation method of design

- will be 1llustrated as it appears in the analysis and design technique of

structured analysis. Structused analysis(3) is a methodology which uses a
grsphical method for functionaly specifying the structure of the system
being desianed. This method uses graphs known as "data flow diagrams® in
conjunction with logical data descriptions stored in data dictionaries to
model the structure of the system, The data flov diagram documents the
structure of the system as the logical flow of data items tnrough the
system, shown as labeled arrows, and the transformations which happen to
these data flows, spown as labeled circles or boxes, The structure of a
data item is documented by a logical definition, including the naming
snd defining of its components, in the data dictionary.

In use the logical data flows and data transformations are derived
in a three step process., First an existing or envisionea pnysical systenm
is modelled, resulting in & data flow dfagram which is labeled with both
physical data items and physical transtormations. In the second phasge
the physical mode) s transformied {nto & loqical model by abstracting
loqical data flovs and transforms, Finally the resuiting logqical model
is moditied until {t models a system which fulfills the requirements.

The results of this process can be seen in the following example
desian of & stopliont control system: The transtormations of data types
(data flows) which taxe place in a stoplight system are diagrammed in
tiqure 2., The pregence or apsence o0f venicle in & lane as ooserved by a
detector is transtormed into an approach being either occupied or empty,

The state of the aoproach is transformed into a reqguest f£or a qreen or

red liaht. This request causes the light to be set to red, yellow or green
88 appropriate considering the current state of the system, Note that this

method of decomposition seeks first to discover, and name, the logical

types of data wnich exist in the system and then name the activities which

transtorm these tyves,
When these data types (arrovs) and their transformations (boxes) are

named and connected, the *data flow diagram® ghown {n FIG 2 results. This
diagram can then be used as 2 basis to model the structure of the system

in Ada. This method of design produces modules (transformations) which are
defined by the interfaces (data flows) petween the modules, This structure

is easily transformed into Ada where the modules become Packages or Tasks
and the interfaces become the visible parts of these modules (ie, types,
object, procedures, functioens or entries),

vehicle Approach Request red
present ~ecassees gocupied scavasss red essescvevsnes St emese yellow

ssvcee) |DeteCtor |=wvesssa) |Approach|~ssecad|lntersection|e=d>|Light |=cecss)
absent ~=====e= empty (Control lgreen i Control { seee= green

F16 2,

This data tlow diagram is transformed into the following design
which is documented as the visible part of an Ada program(FIG 3). In
the desian the modules detector, approach control and intersection
control have two tasks each, one for each direction. The complete
system {s included in the aprendix,

procedure STOPL.LIGHT IS <« main progranm,
type DIRECTION 13 (N_.8,E.W)}s
package DETECTOR {s
task type CONTROLLTASK ;} e~ {3 hardware,
CONTROLSarray(DIRECTION) of CONTROL.TASK;
end DETECTOR;
package APPROACH s
task tyoe CONTROL.TASK is
entry APPROACH.,OCCUPIEDs == interrupt.
entry APPROACHLEMPTY; == {nterruot.
end CONTROL.TASK;
CONTROL:array(DIRECTION) of CONTROLLTASK;
end APPROACH: ’
package INTERSECTION {s
task type CONTROL.TASK {s
entry REQUEST.GREEN?
entry REQUEST.RED)
end CONTROL.TASK)}
CONTROLIarray(DIRECTION) of CONTROL.TASK;
end INTERSECTION}
packace LIGHT is
task CONTROL 1is
entry SET.TO(COLOR)(DIR: in DIRECTION):
end CONTROL?
end LIGHT:
end STOPLLIGHT;

FI1G 3,

The transtormation ¢trorm data flov diagram to program structure
(visible part ot Ada program) was straightforwsrd in this case., The
modyles became packages snd the interfaces became entries or procedures,
These entries or ‘procedures become properties, or resources, of one of
the modules which it connects,

Structured analysis is one of a number of functional decompoesition
methodologies which derive the structure of a system in terms of the
transformations or functions on logical data types. The transformations
proauvce the logical data types which occur in a system from the system’s
other logicai data types, Other functional decomposition methodologies
which produce similar system designs are SADT(21), HOS(17) and data
directed decomposition(ié).

2. Information hiding.

Information hiding(18) is a method of modularization in which each
module nides the irrelevent information about components inside the
module while providing access to the required information to enable use
ot the module, The intertace of a module provides an abstract view(19)
of the entity enclosed within it. The entities which are enclosed in
the modules are tnhe desian decisions which must be made during the
desion process,

To see wny it is that the design décisions are the entities in
the modules, the rational for this methodology must be described, One
ot the major failings in the normal methods of designing systems is
that they produce systems which are expensive to maintain, The reason
that this 1s true {s that the systems are difficult to change, Since
changing a system means changing some design decision, it follows that
if one wants a system to be easy to change (maintain) then each design
decision must affect as little of the system as possible and there
should be as little coupling between design decisions as possible, -
This last sentence was the rational which brought tne information hiding
desian method into existence, Restated it says in order for a systenm
to be maintainable, it shoulé be designed as an interconnection of
modules where each module hides the result of one design decision by
presenting for use by the other modules an abstract view of the entity
about which that decision wasg made,

when a system {s being designed using this methodology, certain
quidelines are use4 when making the design decisions which determine
the decomposition of the sydtem into components. These components
can then be independently desianed, and after the system is in use,
independently modified. Essentially, the inforrmation hiding quidelines
are the foliowing(18):

1. 4aKke a list of all of the design decisions for which
chanqge cannot pe ruled out.

2, Encapsulate each design decision in one module, This means
that all of the programs that require the knovwlege of the decision,
and or’ ' those, comprise the module,

3, Design the abstract interface, This interface consists of
the data types and procedures that the module users need to be
able to make use of the entity in the module witnout knowing how
it is implemented,

As an example of this methodology, in the design of a text editor,
tne way in which the text i{s stored in the editor is a design decision,
For instance the data may be sgtored in meamory,or it may be stored on a
daisk f£{le, or 1t may be stored in virtual memory. Also it may be stored
4% an array or a list of some kind, Theretor the entity to be designed
is made the contents of a8 module, This module called DOCUMENT.HULDER 1is
shown {n FIG 4 a8 an Ada package specification (ie.visiole part),

-

package DOCUMENT_ HOLDER 1is
type LINE 13 STRING(LINELLFNGTH))
type LINELNUMBER 1is private;
procedure CLEAR;
function EMPTY return BOOLEAN;
function NEXTLLINE return LINE.NUMBER}
function PREVIOUS.LINE return LINE.NUMBER}
tunction FIRSTLLINE return LINE.NUMBER)
function LASTLLINE return LINE.NUMBER}
procedure INSERTLBEFORE (LINE.NUMtin LINE.NUMBER: THIS.LINE:in LINE)?
procedure INSERT,AFTER (LINELNUMIin LINE.NUMBER; THIS.LINEIin LINE);
procedure GETLLINE (LINE.NUM:in LINE.NUMBER; THISLLINEsout LINE);
end DOCUMENT.HOLDER}

FIG 4,

As can be seen the Ada package specification is just the apstract
interface needed for this methodology. This package specities that
DOCUMENTLHOLDER is a collection of numbered lines which can be operated
on by using the procedures and functions and can be implemented in any
way as long as the implementation provides the specified types, pProcedures
and functions, R

3. Abstract data types.,

Data apbstraction i{s a “thought tool" as well as a methodology. The
vay in which the designer of a system approaches the design is greatly
influenced by the language in which he expresses designs. The availabfility
of data abstraction facllities in a system design language like Ada
provides the designer with the ability to modularize the system into the
loajcal entities (abstract data objects) most asppropriate to the problem
beign solved,

The use 0f abstraction in the design of systems 18 one of the main
ways of reducing the complexity in the system’s design, The reduction ot
complexity is accomplished by concentrating on defining only the essential
logical characteristics of the system and ignoring for the time being, the
nonessential implementation details of the system, This concentration upon
logical properties leads to the specitication of the system as an apstract
data type, Or object, consisting of the type name and the operations which
are assoclated with the t?pe. Thus the f£irst step in the design process
results in the system beina specified ag an abstract data type in Ada,
that {s a package specification consisting of a type declaration and a set
of obperations (procedures or functions) applicable to objects of that tyve,

Once tne system 1s specified, and thought of, as an abstract data
tyoe(319), the types and operations needed to logicaly implement the system
are conceived and specified as abstract data types. This is accomplished
by a process of successively refining(16) the data abstractions in terms
of other more concrete data types. This successive refinement process is
an iterative process whereby the abstract data types which are needed by
the program at one level are implemented, Or represented, as data types
which sre less abstract or more concrete which are then iaplemented in
terms of even less abstract data types, etc, This decomposition of
abstract data tyoves into less apstract types continues until the data
types needed are availaole directly in the programming language being
used to implement the systenm,

-——

T

AS an example, & one pass assenmbler may be described at the most
abstract level as consisting of an assembly procedure which gets symbols
from & source file and using a symbol taple for storage puts data and
instructions in an object file, The structure of the assembler is snown
in FIG 5. Each of the named boxes is an abstract data type.

| assembly |
|----.----.|
'y ' -
/ | \
get/ insert \put
/ retrieve \

/ ' \
|swcucees | | reccncsan| |svcacvna|
| source | | symbol | | object |
| socescas|] table] jecnnnnns)

| moovosawn|
FIG 5

The specification of the abstract data type symbol table as
an Ada package is shown in FIG 6&, Note particularly that the symbol
tahle {s not the set of memory locations and storage patterns that is
classicly thought of as describing a table, but rather it is a set of
1oaical operations applicable to the type symbol tapnle. A sianiticant
aaditional advantage of decomposing systems into abstract data types
is that some of the data types may be generally useful in other systems,
Since the interface to an apstract data type i{s simple, by definition
its interface s the minimum necessary information needed to use it,
the apstract data tyve is the ideal entity to build libraries around.
Ah example 0f a generally useful data type is the character dbutfer
shown in FIG 6b. .

packaoe SYMBOL.TABLE is
type SYM_NAME 1s new STRING(20);

type SYM.TYPE is (INT.FLOQ?) task BUFFER {is

tyoe ITEM 1is

_ entry READ(C:out CHARACTER);

record entry WRITE(Csin CHARACTER)?
NAME:SYV.NANE} end BUFFER:?
TYPELISYM.TYPT}
LOCATINNIINTEGER?}

end record?
procedure INSERT(SYMBOLsin ITEM):
procedure RETRIEVE(NAME:In SYM.NAME;
SYMBOLsout ITEM);
NOT_FOUND:exception;
~=rajsed by retrieve
end SYMBOL.TABLE?

FIG 6a FIG b0

———
A

P]

— ey

L S

——

4, Documentation,

A significant advantage of using Ada as the means of documenting
the structure of the system ig that it s maintainable using the same
methods and automated tools used to maintain combuter programs, In the
case where Ada is also the implementation language, the maintenance of
the desian documentation becomes automatic since it i{s an integra) part
of the implementation

The actual documentation of the structure of the system 1s contained
in the visible parts of the packages which constitute the specification
of the system, Since these package specifications are textually nested
as required by the language processor and formally provide only the
syntax of the abstract data tyres, it is wise to supplement the Ada
specitication in two ways, First, since people understand the structure
of things better when presented with a graphical representation, the
Ada text should be supplemented with its eguivalent graphical rendition
in a torm similar to FIG 1a,

Secondly, since the Ada text provides only the syntax of the
provided types and operations, that text should be supplemented with
both descriptive semantic infornmation and a 1ist of the required types
and operations, included as comments,

The system documentation should also include structured requirements
specification(12) in a form cowmpatible with the design specification. In
addition, the development of the requirenments should penefit from the use
of a structured analysis technique such as HOS (3,17). A complete system
description of the stoplight control system shown is FIGs 2 and 3 {s
included in apoendix I as as example of the documentation of a system .
Appendix II provides a syntax description of Ada as a System Design
Langvace (SDL) and describes its usaqge,

v, System Comoonent Design,

The design process for the three types of program units is
basicly similar, This process is ocased on the sgmall scale structuring
mechanisms of the Ada language: strong data typing, user definable
data types, structured control constructs and procedure or fgunction
invocation, Ads provides & strong typing mecranism whereby every object
must have a declared type and conversion between objects of different
types is not allowed, During compilation, this mechanism catches a
number of design errors which occur frequently in nontyped lanauages,

- Types in Ada consist of the built in numeric tyoes, enumeration
tyoces, where the orogrammer defines by name the values of tne type, and
certain bujlt in enumeration types such as boolean and character types.
Addaitionaly, Ada orovides user defined composite types whereby the
programmer can define arrays with elements Of the same type and records
with elements of Aifferent types, Ada also provides tne apility to
create dynamic objects of any type by defining access types to those
objects,

The control constructs consist of sequencing of statements, an
alternative cnoice mechanism, an iteration construct and procedure
or gunction invocation. The choice mechanism consists of three
gstatements, the "{f tnen else” gtatenents, the "case" statement and,
in the case of tasks, the "gelect" gtatement, The {teration mechanism
is the "loop" statement with a number of termination methods, The
basic loop is nonterminating, however {t cen be modified by either
8 "for"™ statement to looD & certain number of times, or a "while"
statement to test for a certain condition before each loop. The
procedure invocation occurs as a statement and the tunction invocation
occurs in an expression therepy naming needed operations which are
defined elsevwhere,

PRI

e A - ' . I. l.lll'llll.l- - - . - *

At the logical level, a procedure or function defines a sindqle
abstract event, A package defines an abstract data type which orovides
operations on oermanent objects of the type when requested, A task detines
an abstract data type but it is active and operates in parallel vwith otner
tasks by either providing or asking for operations with those other tasks,

A procedure implementation, for instance FIG 7, may declare some
local types, objects, procedures, functions, packages or tasks. These
declared entities are only visible within the procedure and have &
1ifetime limited to the current invocation of the procedure, Procedures
provide only one operation or event which can be invoked,

procedure SORT (A3in INTEGERLARRAY) {8 =« Dubble sort
procedure EXCMANGE (LEFT,RIGNT:in out INTEGER) {s
TEMPSINTEGER)
begin
TEMPSSLEFT;}
LEFT:=RIGHT;
RIGHT :sTEMP)
end EXCHANGE;?
begin :
for LAST in reverse A°RANGE loop
for FIRST 4in A’FIRST..LAST loop
12 ACFIRST) > A(FIRST+}) then
EXCHANGE (ACFIRST),A(FIRST+1))}
end {¢;
end loop}
end loop!?
end SORT;}
FI1G6 7

A packaae implementation, for instance FIG 8, may also declare
some local types, objects, procedures, functions, packages or tasks.
These declared entities are, again, only visibple within the package
but they now have a litetime which is not limited to the invocation of
one of the procedures in the package’s visible part, but rather last as
fong as the package lasts, Package specitications provide all of the
operations whicn are allowed to be abplied to the enclosed entities,

package body SYMBOL.TABLE {8
subtype INDEX is INYEGER range 1,.,200;
TABLE: array(INDEX) ot ITEM)
tunction FIRSTLFREE return INDEX is ,.. end;
procedure INSERT(SYMBOL:in 1ITEM) {s
pegin
TABLE(FIRST.FREE) :=SYMBOL)
end INSERT;
procedure RETRIEVE(NAMEsin SYM.NAME;SYMBOLtout ITEM) is
begin
¢or 1 in INDEX loo®
i¢ NAME=TABLE(1).NAME then
SYMBOL:=TABLE(I))
return;
end 1¢£;
end loop?
raise NOT.FOUND;
end RETRIEVE} ’
beain
= initialize table
end SYVYBOL.TABLE;)

rI1G 8 (Ivplementation of FIG 6a)

N

ey

P
.. .

A task {mplementation (body) may, like & package, declare local
types, objects, procedures, functions, packages and tasks, but the
tasx can only export entries, These local declarations have, as in
the case of packages, a lifetime equal to that of the task, The control
structures in tasks must however, be supplemented with constructs not
available in procedures or packages since the order in which entries may
be called and the syncronization with other tasks must be represented.
The structure of control in tasks is based on the selection of those
entries which may oe accepted at the current state in processing the task.
In addition the main part of the task body is normally enclosed in an
infinite lo0p, since tasks normally run until explicitly terminated,

An example task pody for the task BUFFER of FIG 6b {s shown in
F1G 9 and a complete system based on tagks is the stoplight system
gshown in appendix I.

task body BUFFER {s
SIZ2ZEiconstant INTEGER:=10;
BUFFsarray(1..8IZE) of CHARACTER}
SLOTS.FULLS:INTEGER range 0,.812E:1=0;
WRITE-INDEX.READ-INDEX:INTEGER renge 1,.812E3=1)
begin
loop
select
wvhen SLOTS.FULL < SIZE =>
accept WRITE(Ciin CHARACTER) do
BUFF(HRITE-INDEX)thI
end;
ARITELINDEX32 WRITELINDEX mod SIZE +}):
SLOTSLFULLsSLOTS.FULL+Y}
or #»hen SLOTS.FULL > 0 =
accept READ(Cstout CHARACTER) do
C:=BUFF(READLINDEX)?
ends
READ.INDEXtsREAD,.INDEX wod 8!2541:
SLOTSLFULLt=8LOTS.FULL=1}
or
terminate;
end select)s
end looe?
. end BUFFER:

FIG 9 (Implementation of FIG 6b)

The small scale structuring mechanisms in the Ada lanquage are
constraints on the structure of the components £rom which systems
are constructed. Thelr purpose is not to assist in the development
of algorithms but rather in forcing the implementation of the
algorithm to clearly disbplay the 1ogic of the algoritnm in terms
appropriate to the algorithm, In addition these mechaninisms cause
tne information necessary to understand the algoritnm, nemely tne
information used by the algorithm, to be highly localized, Thus Ada
88 a progrsm design language (PDL) enhances the maintainability of
the components of a system in an analogous way to the way Ada as a
System Degsign Language enhances the maintainability of the system,
Tnat is, Ada enhances maintainability by constraining structure so
that the structure of the system (Or program) clearly displays the
1o0gic of the solution to the problem and the information necessary
to understand any vart of the system is local to that part.,

—

PR ST

SNEEN R

.

-

Y

-~

vVi. Conclusions.

The use of Ada as & System Design Lanquage (SDL) imposes some
significant constraints on the mogularizstions which can be used in
the desian of systems, The imposition ot these constraints is the
source of tne strength of Ada as the 8SDL in the same way that the
imposition of constraint onh the control structure of programs is the
source of strength of structured programming, Good systems like good
programs nave a structure that s discernadble to the reader and
have 8 good localization of names and concepts in the component
parts. Thus the structured programming and the modularization required
by Ada reduyces the complexity(i?7) of system designs and implementations.
The constraints which Ada imposes on designs are in how one may
specify the components from which one can construct tne system and how
these components can be interconnected to form the system, The specifi-
cation of a component in Ada is the specitication or visible part of
an Ada package, This is exactly the apstract interface (19) syntax
reguired by tne modern modularization methods, A document consisting
of the Ada package specifications which constitute a system, fe, an SDL
description, supolemented with its graphical equivalent is an ideal
formal design descriotion from the points of view of understandability
and maintainaoility(iS). when this degign description is implemented
in the Ada language, an additional twolold advantage s accrued, Both
the design and the implementation mirror the structure of the problem
and the Aegian documentation is automatically maintained since it is
an integral part of the finished systenm,

3

p———n

po—~

a—sy

c=

|
i ea de

Y

1.
2.

3.

4,

S.

6.

7.

9.

10.

11,
12,

13.

14.
15.

16.

REFERENCES,
Ada reference manual, July 1980,

Ceine, S. & Gordon, E. PDL=A tool for software desion.
Proceedings, National Computer Conterence,1975.

‘ Demarco, T. Structured analysis and system specification

Prentis Hall 1979.

DeRemer,F, & Kron,H, Programming in the large versus programming
in the small,
1EEE trans S.E, June,19%6., .

Design and imoplementation of programming languages,
Soringer=verlagilLecture notes in computer science (54),

Dijkstre, £.4, The structure of the "THE" aultiprogramming system,
Co ACM 11 (May 1968),341-346,

Guttag,J. Abstract data types and the development of data structures.
C.ACM 20,6,(June 1977),396=404,

Gugtag,J, Notes on type abstraction,
Proceedings,Soecification of reliable softwvare IEEE 1979,
& IEEE Trans S.E. Jen 1980,

Habermann,A.N, ,Flon,L, & Coobrider, L., Modularization and hierarehy in
8 family of ooerating systems, C.ACM 19,5,(May 1976),266=272,

Hapermann,A.i, & Perry,D, vell formed system compositions,
carnegie Mellon Univ, Comp Sci Rept Mar 1980,

Higher Order Software Tech Rept no.4 AXES syntax description Dec 1976,

heninger,K. Soecifying software requirements for complex systems:
News techniques and their application,

Proceedings,Soeciftidation of reliable software IEEE 1979,

¢ IEEE Trans S.E. Jan 1980,

Jackson,K. Parallel processing and modular software construction,
Design and imolementation of vrogramming languages,
Snringer=verlag:Lecture notes (n computer science (54),

Jensen § wirth Pascal users manual. Springer=verlaq.

Jones,C, A survey of programming design and specification techniques.
Proceedinas,Specification of reliable software IEEE 1979.

Morris, J.8. Programmine by successive refinement of data abstractions,
Software practice and experience, Apr 1980,

-

17.

19,

20.

1.

22.
23,

24.

Pager, D. On fne problem of communicating complex information,
C.ACM 16,5,(nay 1973),275-281,

parnas, D, A technique for software module specification with examples,
C.ACM 15,5,(vay 1972),330=-336,

Parnas, 0., Use of abstract interfaces in the develodment of software
for embedded systemsg, NRL Report 8047,1977,

Rational for tne design of the Ada programming language,
ACM Sigplan notices 14,6,(June 1979), Part B,

Ross,D,T. Structured analysis(SA):A language for communicating ideas,
JEEE Trans S.E. Jan 1977,

Steelman, DoD HOL Requirements. June 1977,

wirth,N, Program development by stepwise refinement,
C.ACM 14,4,(Apr11 1971),221=227.

Yourdon,E. Structured walkthroughs,
Prentis~Hall. :

APPENDIX I, DESIGN EXAMPLE: A STOPLIGHT CONTROL SYSTEM,

STOPLIGHT DATA FLOW DIAGRAM, .

The transformations of data types which teke place in & stoplight
are diagrammed in the figure, The detection or non detection of a
vehicle in a lane is transformed into that approach veing either
sacupied or enpty. The state of the approach is transtormed into
8 request fOor a green or red light, This regquest causes tho lignt
to pe set to red, yellow or green,

shen these data types and their transformations are named and
connected, the following *data flow diagram” results, This diagranm
can then be used to model the structure if the system. This method
of design produces modules (transformations) whose descriptions
are the intertaces dbetween the modules., This structure s easily
modeled in Ada wvhere the modules bdbecome Packages or Tasks and the
intertaces become the visible parts of these modules (le. types,
object, procedures or entries),

Approach Request red
vehicle =ccecwss gecuplied ~occsce=s red eseassscases gt eeeas yellow
vessa=){Detector{e=cemsa) | Approach|~====)|Intersection|==>|Light |eeecs)

cesccccs empty iContzol igreen | Control | s=ee= Qqreen

N N

STOPLIGHT REQUIREMENTS SPECIFICATION,

1. INTROQDUCTION,
- This reauirements specification describes a stoplight system
- and its components, The description uses module descriptions to
l describe the system itself and each 0f the hardware and gsoftware
components, The module descriptions give only the external
behavior (intertace characteristics) of the system or component,
These intertace cnaracteristics are just the visipnle benhavior ot
s tne module and are described independent of other modules wnich
- this module may be connected to. This means that, for instance,
. hardwvare modules descriptions refrain from desribing the system
etfects which the module causes or displays. Software modules
likevwise refrain from describing their effect on either the
hardvare or other software modules but aerely the functions
that it provides.,

B 2. STOPLIGHT SYSTEM.

MODULE NAME: STOP.LIGHT

BEHAVIOR: The stoplight system controls a signal at a four
e way intersection., It detects vehicles in en approach area ot
| each approaching lane ot the intersection and provides a green
. liant to occupied lanes,
Y when no lanes are occupied all lights are red. .

‘When a lane becomes occupied the 1ight in its direction
is made green, .

A3 long as the lane remains occupied the lignt in its
direction remains green., If however, a lane in the opposite
direction becomes occupied then, atter 15 seconds, the lignt
in the current direction goes tnrough yellow to red and the
l1iaht in the opposite direc.ion becomes green,

shen a lanes in a direction necome empty the iignt in
that direction goes through vellow to red,

3. HARDWARE MODULES.

MODULE NAMES DETECTOR s

BEHAVIOR: Detects when a lane approach becomes occupied
D and sinonals tnat its lane is occupied (ie., generates an
occuried interrupt), Detects when a lane becomes empty and
signals tnat its lane is empty (ie., generates an empty
i{nterrupt). .

There are two detectors, one wnich responds to lanes
o in the nortnegoutn direction (the north detector is ORed
- with the soutn detector), and one of which responds to the
| eastewest direction, .

CHARACTERISTIC VALUES: , ' T
NeS OCCUPIED => INTERRUPT AT LOCATION @ {

; NeS EMPTY s> INTERRUPT AT LOCATION 16 ‘

) =4 OCCUPIED => INTERRUPT AT LOCAZION 12 ;o

- =7 EMPTY => INTERRUPT AT LOCATION 20 P

L2 LA LD L X2 LA LD Ll A 2 A L1 L. XY i il il rYrlrrylrlryirriyrryrrrrrryrryrry Ty ¥y] [

oy

w; et e

e e

R 7 AR

Paa— . P

MODULE NAME: LIGHT

PROVIDES: Type COLOR 1s (RED,YELLOW,GREEN)
LIGHT(NLS,ENW)

BEHAVIOR: LIGHT = array(NaS.E.W) 0f three lamps with red,yellowvw and
Qreen filters, Each laap can be on or oftf,

CHARACTERISTIC VALUES:
LIGHT = LOCATIONS 76,80
RED = b 100
YELLOW = b 010
GREEN = b 001

4, SOFTWARE MODULES,

MODULE NAMES APPROACH.CONTROL

PROVIDES:t LANE.OCCUPIED
LANELEMPTY
LOOKLAT(LANE)
CYCLE

RFQUIRES: REQUESTLRED
REQUESTLGREEN

AEHAVIOR: Model state (empty, occupied) of lane.
LANE.OCCUPIED causes occupied & REQUESTLGREEN.
LANELEMPTY causes empty & REQUEST.RED.

LOOKLAT sShows state,
CYCLE behaves like EMPTY tolloved oy OCCUPILED,

MODULE NAME: INTERSECTION,CONTROL

PROVIDES: REQUESTLRED
REQUEST-G@REEN

REQUIRES: noox-ar(nxcnr).Lonx-urtuuuea.ssr-rO(cbnoa)(oxa).crcne
BEMAVIOR: when lights are red REQUEST.GREEN causes

SET.TO(GREEN) (MYLDIRECTION),
when {ts lignt is green REQUEST.RED causes

SETLTOCYELLOW) (MYLDIRECTION) then SETLTO(REL) (MYLDIRECTION), .

when {ts light {8 green AND its epproach is continuously
occupied AND, sfter 15 seconds, the other approach beconmes
occupied cause CYCLE,

MODULE NAMES SIGNAL,CONTROL

PROVIDES: SET.TO(COLOR)(DIRECTION)
LOOKLAT(LIGHT)

REQUIRESS LIGHT(DIR)(COLOR(ON,OFF))

3EHAVIORS Moael state (NeS,EeW)(RED,YELLOW,GREEN) of 1ight,
SET.TO causes LIGHT(DIRECTION)$= COLOR,
LOOK.AT copies the state of LIGHT,

'_4441 aaduad

STOPLIGHT CONfROL SYSTEM DIAGRAM

! DETECTOR |
I (N.S) I

ILANE.NCCUPIED
ILANE_EMPTY
i

i DETECTOR |
| (Ea¥W) |

ILANELOCCUPIED
ILANE.ENMPTY
|

! APPRDACH.CONTROL | | APPROACH.CONTROL |
| (N.S) | | (E.¥W) |
'-----..-..-.-...-.‘ .-.---.-.----.-...-l

PS { . {

| LOOKLAT | {LOOKLAT

IREQUESTLGREEN | (LANE) IREQUEST.GREEN | (LANE)
IREQUESTLRED ICYCLE _ IREQUESTLRED ICYCLE
!) i l

i v | v
|evaccnsnnonccssnasean| LOOK_AGAIN jesonvocnavenccnscssa |
| INTERSECTION.CONTROL|C=em=acseaa=e|INTERSECTION.CONTROL I
] (NaS) ({eceveacoccnen) | (ElW) i
|sncncsnnnccacnvassans| LOOKLAGAIN |eccncocvcavsssavnnss|

L) o
\ /
\ /
LOOK.AT (LIGHT)
{oesnasssee SET.TO (COLOR) ecncacswwe)
| \ / SIGNAL |
] |evenccavasa| i
| | +CONTROL | i
[} |sonvenasace|)
{ . i
| ICOLOR [
| ’ 10N, OFF |
! | |
(] (oocaconsse| i
' ! LIGHT | (|
[] |sooncacana) i
| |
|soecassvvscnsovnsanaccsacncaccscncea|

s
c -
Cy

P 4

procedure STOP.LIGHT.CONTROL.SYSTEM is == Main program
' == System Specitication
I , type DIRECTION i3 (N.S,EaN)} , o= SDL

package DETECTOR {s
task type DETECTOR.TASK 3

DETECTOR:tarray(DIRECTION)of DETECTORLTASK}

== Detects vehicles {n the approach to the intersection snd
I == gignals the approach controller in {ts direction when the

== approach becomes occupied or empty.

==REOUIRES: LANE.OCCUPIED, LANE.EMPTY

end DETECTORy

L package APPROACH is
: tyoe LANE is (EMPTY,OCCUPIED):
l' task type CONTROL.TASK is
entry LANE.OCCUPIED; ~-=interrupt.
entry LANELEMPTY: seinterrupt,
entry LOOKL.AT(L:out LANE);
entry CYCLE; -=Behaves like EMPTY followed by OCCUPIED,

~ == OCCUPIED causes a request for a green)ight,
R == EMPTY causes & request for a red lignt,

i entry INITIALIZE.TO(DIRsin DIRECTION))

., end CONTROL.TASK} >

CONTROL:array(DIRECTION)of CONTROL.TASKS
for CONTROL(DIRECTIDN'FIRST).LANE-OCCUPIED use at 9;
for CONTROL(DIRECTION’LAST).LANELOCCUPIED use at 12)
for CONTROL(DIRECTION’FIRST) .LANELEMPTY use at 16;
for CONTROL(DIRECTION’LAST) . LANELEMPTY use at 20;

«=REOUIRES! REQUEST.GREEN; RtOUtST-R:D:

end APPROACH:

package INTERSECTION 1s
task type CONTROL.TASK is

entry REQUEST.RED?
entry REQUEST.GREEN;
entry LOOK.AGAINS w= look at the light and the intersection again.
entry INITIALIZE.TO(DIR3in DIRECTION)}
ond CONTROL.TASK?

conrﬁob:arrav(blkscrlou)ot CONTROL.TASK?
== Provides green lights to occupied roads and red 1ights to
== empty roads while alternating when necessary.

»=REQUIRES: LOOK.AT(LIGHT)s LOOKLATCLANE); SET.TN(COLOR)(DIRECTION);

.o CYCLE; OTHERLDIRECTION,LOOK.AGAIN;

end INTERSECTIOW?

-

package SIGNAL s
type COLOR is (RED,YELLOW,GREEN)?}
tor CULOR use (RED=2>24100#,YELLOW=>2¢0108,GREEN=>28001¢))
y type STOPLLIGHT is arrey(DIRECTION) of COLOR}
; LIGHT$STOPLLIGKT t=(RED,RED) S
) for LIGHT use at 763
| task CONTROL is
entry SZT.TOCCOLOR)(DIRIin DIRECTION); -,
entry LOOKLAT(Liout STOP.LIGHT)} o
== SE€Ts light in one direction to red,yellow or green :

L = while setting other direction to red.
| end CONTROLJ
salncludes the module LIGHT from wnich it =

*oREQUIRESLLIGHT(DIRECTION,COLORCON,OFF))}
_and arru;na . , _ | L == End Specification

package body DETECTOR is e=Begin System Inplementation

== Yardware,
end DETECTOR?

package body APPROACH 1s
task body CONTRULLTASK is
MYLLANEILANE $=EMPTY?:
MY.DIRIDIRECTION?

begin == APPROACH,CONTROL.TASK
accept INITIALIZE,TO(MY.DIR:in DIRECTION); e==)learn my direction
100D
select
accept LOOKLAT(Ltout LANE) do
LisMYL.LANE?
end;}
or accepot LANELOQCCUPIED do
MY.LANE$=0CCUPIED];
INTERSECTION . CONTROL(MY.DIR), REOUEST-GREENI
ends
or accept LANELEMPTY do
MYLLANE:ZEMPTY?
INTERSECTION,CONTROL(MYLDIR) ,REQUEST.RED}
end; :
or accept CYCLE; e=-gimujate break in steady stream of trattic.
1f MY.LANE=QCCUPIED THEN == {f necessary.
INTERSECTION,CONTROL(MYLDIR) . REQUEST.RED?
INTERSECTION,CONTROL(MY.DIR) ,REQUEST.GREEN}
end 1£;
end select:
end loop?
end COMIROL.TASK?
end APPROACH?

package body INTERSECTION s
task body CONTROLLTASK g
MY_DIRSDIRECTION}
OTHER.LDIRSDIRECTION}
OTHERLLANESAPPROACH,LANE?
LIGHTISIGNAL.STOPLIGHT?

begin == INTERSECTION,CONTROL.TASK
accept INITIALIZE.TO(MY.DIRsin DIRECTION) do =~=learn my direction
1 MYLDIR=DIRECTION’LAST then
OTHERLDIR:=DIRECTION’FIRST?
else
OTHERLDIRS=DIRECTION’SUCC(MY.DIR)}
end 1¢;g
end INITIALIZE.TO;
loop
SIGNAL,CONTROL 4 LOOKLAT(LIGHT)}
select
wnen LIGHTs(RED,RED) =>
accept REQUESTLGREEN do
SIGNAL,CONTROL,SET.TO(GREEN) (MY.DIR)?
xurznszcrxou CONTROL(OTHERLDIR), LOOK.AGAIN:
ends
or when LIGHT(MYLDIR)=RED => ~« catch extra red reauests
8cceot REJVEST.RED!S

=

or when LIGHT(MY.DIR)=GREEN =>
accept REQUEST.RED do
SIGNALCONTROL,SETL.TO(YELLOW) (MY_DIR):
delay 3sSECONDS:; '
SIGNAL,CONTROL,SET.TO(RED) (MY.DIR)?}
INTERSECTION CONTROL(OTHERSLDIR) LUOKLAGAIN?
end;
or vhen LIGHT(MY.DIR)=GREEN =>
delay 1S*SECONDS?

APPROACH,CONTROL(OTHERLDIR) , LOOKLAT(OTHERLLANE) 5

1t OTHERLLANE=OCCUPIED then
APPROACH.,CONTROL(MYLDIR) .CYCLE}
end 1¢f;
or accept LOOKLAGAINS
end select?
end loop;

end CONTROL.TASK?

end INTERSECTION:

package SIGHAL is 5
task b>ody CONTROL is

beain == SIGHNAL,CONTROL

loop v
select)
acceot LOOX, AT(Ltout LIGHT) do
Le=LIGRT:
end; .

or ahen LIGHTa(RED,RED) =>
accept SET.TO(GREEN)(DIR: in DIRECTION) doO
LIGHT(DIR) ¢SGREEN?
end;
or accept SET.TOCYELLOW)CDIR:in DIRECTION) do
LIGHT(DIR) $=YELLOwW?
end;
or accept SET.TO(RED)(DIR:in DIRECTION) 4do
LIGHT(DIR)Stgtbt
end; . :
end select?
end loop?
end CONTROL:
end SIGNAL?

peain =« STOP.LIGHT.CONTROL.SYSTEM Main program

tor DIR in DIRECTION loop ==make controllers aware of their directions

APPROACH,CONTROL(DIR) ,INITIALIZEL.TO(DIR)}
INTERSECTION.CONTROL(DIR) (INITIALIZE.TO(DIR)}
end loop?

end STOP.LIGHTLCONTROLLSYSTEM; e= £nd System Implementation

L SRR

S

R

APPENDIX II, SYSTEM DESIGN LANGUAGE
SYNTAX INFORMATION

SYNTAX SUMMARY

corpilation 3:= {compilation.ynit) _
compgilation,unit 33z {WITH unit.name{,unit.name))subprogram.declaration;
| {(WITH unit.name{,unit.name))supprogram.body;
| {WITH unit.name{,unit.name))package.declaration;
I (WITH unit.name{,unit.name))package.dbody;
i {(WITH unit.name{,unit.name))suounit;
subproaram,declaration ::= PROCEDURE identifier(formal.part)
| FUNCTION identifier(formal.partlRETURN type
subprooram.body $:= subprogram.declaration IS
{declarative_itenm)
BEGIN
{statement)
END .
package_.declaration $:= PACKAGE identifier IS
{declaritive_iten)
fPRIVATE
{declaritive_itenm)] .
END
vackage_body 33= PACKAGE B80DY identifier IS
{declaritive.iten)
[BEGIN
{statement))
END
subunit ::= SEPARATE(unit.name) suybunit.body
declarative_item ::= object.declaration
| type.declaration
subprogram,.declaration
package.declaration
task.declaration

1)

RATIONAL AND USAGE

In Ada, system structure has two views: The textual system structuyre
and the physical system structure, The textual system structure is the
textual Jayout of the program and is portrayed by the systematic nesting
of program units(packages, subprograms and tasks) within declarative
parts of other proaram units, Also, the specification of a program unit
{ie, its penavior deftinition) is textually separate from the body of that
program unit(ie. its implermentation), This textual structuring of the
system accomplishes tné grouping of semantically related units and
controls the scope of names in the systenm,

The physical system gstructure is tnhe grouping of program units into
compilation units. Each oroqgram unit specification and body is a
compilacion unit and is compilable separately from the other compilation
vnits, The visiolility, or allowed usage, of items declared in other

" compilation units must pe provided explicitly, using a ~ITH(other.unit)
clause, in & compilation unit, This allows precise control of the nanmes
useble in & unit,

pr——
- d

[,

[[[-3

- b

——d

-4

| S

L.

The textual structuring mechanism provides the basic control of the
visibility of named entities via nesting and separation of behavior from
implimentation, wnile the pnysical structuring mechanism provides the
additional capapility of explicit control o¢ the dependencies of units
on other units «hicn are textualy visible to the unit,

Textually, & system in Ada {5 normally presented as & procedure,
giving a name to the system, which has a (large) declarative part, The
declarative part consists of types and objects global to the system, a
seauence of package specifications which define the components of the
system and a sequence of package bodies which implement the components,
The (small) sequence of statements of the "main” procedure serves to
initialize the components and start the operation of the system,

For example, textually a system appears like the following:

procedure SYSTEM is
type GLOBAL.TYPES is
OBJECT: TYPE;
[X N
package FIRST 13 .
typPe .o
OBJECTS eoe
procedure speciftications
&
function specitications
end FIRST;
package SECOND {s
LR N]
end SECOND;
package THIRD is

end THIRD;

‘o

package body FIRST 1is
type ...
OBJECTS ,»»
procedure bodies

& L Y

function bodies

end FIasTy

vacxkaje body SFCOND {s

[X X)
end SECOND?
package body THIRD is

end THIRD;}

beain == gequence.of.statements
initislize;
start;

end SYSTEM;

P L._.gL_LJ

,,}
VO O

Leyered on tod of this textual structure i{s the physical structure
of compilation units, This provides three advantages not possibdle with

Just textual structuringt

Separanility of the development of components from one another,
therepy allowing the development of components in parallel.

Incressed control of the development of the system, since the
desianer has control of the desiqgn (specification parts) while the
programmers have control of only their component’s implementation,

Increased clarity in the design, since dependencies among modules
are made explicit by the use of "with®” clauses,

The above example can pe divided intd compilation units in either
of the following two ways: (dashed lines separate compilation units)

COLLECTION OF UNITS
packege GLOBAL {is
tyoe GLOBAL .,
OBJECTS :GLOBAL ,,
with (GLOBAL)
package FIRST {is
LN N}
end FIRST;
" with (GLOBAL,FIRST)
package SECOND s
end SECQMD?
with (GLO3AL,SECOND)
procegdure SYSTEM is
[N N]
end SYSTEM:
vackage hody FIRST is
[N N |
end FIRST?

package body SECOND is

o0
end SECOND3

UNIT 41ITH SUBUNITS
procedure SYSTEM {s
type GLOBAL ..,
CBJECTSSGLOBAL ..
package FIRST is
o080
end FIRST;
package body FIRST {s sepsrate;
package SECOND is
[X K J
end SECOND:
package body SECOND is separates
begin

end SYSTEM;

separate (SYSTEM)

package body FIRST is
[N N]

end FIRST;

separate (SYSTEM)

package body SECOND (s
[X N

end SECOND;

Both of these have the game textual nesting but the physical
lavout of tne first (collection of units) is more flexiole and petter
controls the dependencies of components (packaaes) uoon one another,
whereas tne second (units with supunits) provides an exposition of
the textual structure of the system in a sinQgle vackage (ie., SYSTEWM),
Large systems will probably benefit more from the first style due to
its tianter control of structure and greater potentis]l for parallelism
in development whereas small gystems may benefit from the ease of
mansoing the desiin within one unit provided by the second style.,

Fr——

Tasks are proaram units but they are not compllation units, Since
most embedded computer sSystems will need to yuse tasking, the ability
to provide tasks as compilation units can be accomplished as follows:

The task type, its needed type definitions and the task object(s)
are declared in tnhe specification part of a package wnose sole puroose
{s to encapsulate the task, The package is then viewed as the component
and tne body of the task can be Separately compilable by maxing it the
subunit of the packaqge specification, For example:

package PACKAGELNAME {5
typres <.

task tyoe TASK,.TYPE.NAME {s
entry FIRST;
end TASK.TYPELNAME;
task body TASK.TYPE.NAME {s separate;

TASK._DBJECTS:TASK.TYPE.NAME}
end PACKAGE.NAME}
separate (PACKAGELNAME)
task body TASK.TYPE.NAME {s

end TASKLTYPELNAME?

t’
RS L 7S

ERRRE

K

